Table of ContentsCONTENT

Table of Contents

Ch3-Complex numbers and hyperbolic functions

Administrator
2024-08-18 / 0 Comments / 0 Liked / 46 Read / 5457 Words

Mathematical Methods for Physics and Engineering

1. Complex number division [Page 90-91]:

z1z2=x1x2+y1y2x22+y22+ix2y1x1y2x22+y22\frac{z_1}{z_2}=\frac{x_1x_2+y_1y_2}{x_2^2+y_2^2}+i\frac{x_2y_1-x_1y_2}{x_2^2+y_2^2}

Especially for conjugate division:

zz=x2y2x2+y2+i2xyx2+y2\frac{z}{z^*}=\frac{x^2-y^2}{x^2+y^2}+i\frac{2xy}{x^2+y^2}

2. Complex number logarithms [Page 100]:

z=rei(θ+2nπ), Lnz=lnr+i(θ+2nπ)z=re^{i(\theta+2n\pi)},\ Lnz=lnr+i(\theta+2n\pi)

3. Complex number applied to differentiation and integration [Page 101]:

Sometimes complementing trigonometric functions to be complex functions will simplify the differentiation or integration.

Example:

Evaluate the integral I=eaxcosbxdxI=\int e^{ax}cosbxdx.

I=eaxcosbxdx=Re[e(a+ib)xdx]=Re[eaxa2+b2(aeibxibeibx)+c]=eaxa2+b2(acosbx+bsinbx)+c1I=\int e^{ax}cosbxdx=Re[\int e^{(a+ib)x}dx]\\ =Re[\frac{e^{ax}}{a^2+b^2}(ae^{ibx}-ibe^{ibx})+c]\\ =\frac{e^{ax}}{a^2+b^2}(acosbx+bsinbx)+c_1

4. Hyperbolic functions [Page 102-108]:

Definition:

sinhx=exex2, coshx=ex+ex2tanhx=exexex+ex, cothx=ex+exexexsechx=2ex+ex, cosechx=2exexsinhx=\frac{e^x-e^{-x}}{2},\ coshx=\frac{e^x+e^{-x}}{2}\\ tanhx=\frac{e^x-e^{-x}}{e^x+e^{-x}},\ cothx=\frac{e^x+e^{-x}}{e^x-e^{-x}}\\ sechx=\frac{2}{e^x+e^{-x}},\ cosechx=\frac{2}{e^x-e^{-x}}\\

Relations between hyperbolic and trigonometric functions:

cosh(x)=cos(ix), cos(x)=cosh(ix)isinh(x)=sin(ix), isin(x)=sinh(ix)cosh(x)=cos(ix),\ cos(x)=cosh(ix)\\ isinh(x)=sin(ix),\ isin(x)=sinh(ix)

Identities of hyperbolic functions:

sech2x=1tanh2xsec2x=1+tan2xcosech2x=coth2x1cosec2x=cot2x+1sinh2x=2sinhxcoshxsin2x=2sinxcosxcosh2x=cosh2x+sinh2xcos2x=cos2xsin2xsech^2x=1-tanh^2x\leftrightarrow sec^2x=1+tan^2x\\ cosech^2x=coth^2x-1\leftrightarrow cosec^2x=cot^2x+1\\ sinh2x=2sinhxcoshx\leftrightarrow sin2x=2sinxcosx\\ cosh2x=cosh^2x+sinh^2x\leftrightarrow cos2x=cos^2x-sin^2x

Inverses of hyperbolic functions:

sinh1x=ln(x2+1+x)cosh1x=ln(x21+x)tanh1x=12ln(1+x1x)sinh^{-1}x=ln(\sqrt{x^2+1}+x)\\ cosh^{-1}x=ln(\sqrt{x^2-1}+x)\\ tanh^{-1}x=\frac{1}{2}ln(\frac{1+x}{1-x})

Differentiation of hyperbolic functions:

ddxsinhx=coshx, ddxcoshx=sinhxddxtanhx=sech2x, ddxsechx=sechxtanhxddxcosechx=cosechxcothx, ddxcothx=cosech2xddx(sinh1xa)=1x2+a2ddx(cosh1xa)=1x2a2ddx(tanh1xa)=aa2x2,(x2<a2)ddx(coth1xa)=ax2a2,(x2>a2)\frac{d}{dx}sinhx=coshx,\ \frac{d}{dx}coshx=sinhx\\ \frac{d}{dx}tanhx=sech^2x,\ \frac{d}{dx}sechx=-sechxtanhx\\ \frac{d}{dx}cosechx=-cosechxcothx,\ \frac{d}{dx}cothx=-cosech^2x\\ \frac{d}{dx}(sinh^{-1}\frac{x}{a})=\frac{1}{\sqrt{x^2+a^2}}\\ \frac{d}{dx}(cosh^{-1}\frac{x}{a})=\frac{1}{\sqrt{x^2-a^2}}\\ \frac{d}{dx}(tanh^{-1}\frac{x}{a})=\frac{a}{a^2-x^2},(x^2<a^2)\\ \frac{d}{dx}(coth^{-1}\frac{x}{a})=\frac{-a}{x^2-a^2},(x^2>a^2)\\
0

Comment Section