Mathematical Methods for Physics and Engineering
1. Complex number division [Page 90-91]:
z2z1=x22+y22x1x2+y1y2+ix22+y22x2y1−x1y2 Especially for conjugate division:
z∗z=x2+y2x2−y2+ix2+y22xy 2. Complex number logarithms [Page 100]:
z=rei(θ+2nπ), Lnz=lnr+i(θ+2nπ) 3. Complex number applied to differentiation and integration [Page 101]:
Sometimes complementing trigonometric functions to be complex functions will simplify the differentiation or integration.
Example:
Evaluate the integral I=∫eaxcosbxdx.
I=∫eaxcosbxdx=Re[∫e(a+ib)xdx]=Re[a2+b2eax(aeibx−ibeibx)+c]=a2+b2eax(acosbx+bsinbx)+c1 4. Hyperbolic functions [Page 102-108]:
Definition:
sinhx=2ex−e−x, coshx=2ex+e−xtanhx=ex+e−xex−e−x, cothx=ex−e−xex+e−xsechx=ex+e−x2, cosechx=ex−e−x2 Relations between hyperbolic and trigonometric functions:
cosh(x)=cos(ix), cos(x)=cosh(ix)isinh(x)=sin(ix), isin(x)=sinh(ix) Identities of hyperbolic functions:
sech2x=1−tanh2x↔sec2x=1+tan2xcosech2x=coth2x−1↔cosec2x=cot2x+1sinh2x=2sinhxcoshx↔sin2x=2sinxcosxcosh2x=cosh2x+sinh2x↔cos2x=cos2x−sin2x Inverses of hyperbolic functions:
sinh−1x=ln(x2+1+x)cosh−1x=ln(x2−1+x)tanh−1x=21ln(1−x1+x) Differentiation of hyperbolic functions:
dxdsinhx=coshx, dxdcoshx=sinhxdxdtanhx=sech2x, dxdsechx=−sechxtanhxdxdcosechx=−cosechxcothx, dxdcothx=−cosech2xdxd(sinh−1ax)=x2+a21dxd(cosh−1ax)=x2−a21dxd(tanh−1ax)=a2−x2a,(x2<a2)dxd(coth−1ax)=x2−a2−a,(x2>a2)
Comment Section